

5.1.1 Identify a situation that requires the use of recursive thinking

What is Recursive Thinking?

• Solving a problem by breaking it into smaller instances of itself.

• Key features:

o Base case: when recursion stops.

o Recursive step: method calls itself with a smaller input.

Example 1: Fractals (Snowflake Generation)

Fractals show self-similarity: parts look like the whole.

Recursive Idea:

• Draw a line segment.

• Subdivide into smaller segments.

• Repeat for each segment.

Pseudocode:

METHOD DrawFractal(level, length)

 IF level = 0 THEN

 Draw straight line of 'length'

 ELSE

 FOR each segment (usually 4 segments)

 DrawFractal(level - 1, length / 3)

 Turn by specific angle (e.g., 60 degrees)

 ENDFOR

 ENDIF

ENDMETHOD

Example 2: Calculating Factorial

Factorial of a number n (written as n!) is:

• n! = n × (n-1) × (n-2) × ... × 1

• Special case: 0! = 1

Recursive Idea:

• n! = n × (n-1)!

• Base case: 0! = 1

Pseudocode:

METHOD Factorial(n)

 IF n = 0 THEN

Za
hr
a
Za
hi
d

 RETURN 1

 ELSE

 RETURN n × Factorial(n-1)

 ENDIF

ENDMETHOD

Example:

Calculate 3!

• Factorial(3) → 3 × Factorial(2)

• Factorial(2) → 2 × Factorial(1)

• Factorial(1) → 1 × Factorial(0)

• Factorial(0) → 1 (base case)

So:

Factorial(1) = 1

Factorial(2) = 2 × 1 = 2

Factorial(3) = 3 × 2 = 6

5.1.2 Identify recursive thinking in a specified problem solution

Example: Binary Tree Traversal

A binary tree is naturally recursive:

• Each node acts as a tree.

Recursive Idea:

• Traverse left subtree.

• Visit node.

• Traverse right subtree.

(Inorder Traversal)

Pseudocode:

METHOD InorderTraversal(node)

 IF node ≠ null THEN

 InorderTraversal(node.left)

 OUTPUT node.value

 InorderTraversal(node.right)

 ENDIF

ENDMETHOD

Za
hr
a
Za
hi
d

5.1.3 Trace a recursive algorithm to express a solution to a problem

Example Trace: Inorder Traversal of a Binary Tree

Tree structure:

 4

 / \

 2 5

 / \

 1 3

Tracing Steps:

1. InorderTraversal(4)

2. → InorderTraversal(2)

3. → InorderTraversal(1)

o Left null → OUTPUT 1

o Right null

4. Back to 2 → OUTPUT 2

5. → InorderTraversal(3)

o Left null → OUTPUT 3

o Right null

6. Back to 4 → OUTPUT 4

7. → InorderTraversal(5)

o Left null → OUTPUT 5

o Right null

Final Output:

1 2 3 4 5

Za
hr
a
Za
hi
d

5.1.4 Describe the characteristics of a two-dimensional array

What is a Two-Dimensional Array?

• A collection of data organized in rows and columns.

• It is like a table or matrix.

• Each element is accessed using two indices (row and column).

Example:

An array of 3 rows and 4 columns:

[[1, 2, 3, 4],

 [5, 6, 7, 8],

 [9, 10, 11, 12]]

Access array[1][2] → value 7.

Link: 1D arrays are lists, 2D arrays extend lists into a grid.

5.1.5 Construct algorithms using two-dimensional arrays

Example 1: Initializing a 2D Array

Pseudocode:

METHOD InitializeArray(rows, cols)

 DECLARE array[rows][cols]

 LOOP FOR i FROM 0 TO rows-1

 FOR j FROM 0 TO cols-1

 array[i][j] ← 0

 ENDFOR

 ENDFOR

 RETURN array

ENDMETHOD

Za
hr
a
Za
hi
d

Example 2: Summing all elements in a 2D Array

Pseudocode:

METHOD SumElements(array, rows, cols)

 DECLARE total ← 0

 FOR i FROM 0 TO rows-1

 FOR j FROM 0 TO cols-1

 total ← total + array[i][j]

 ENDFOR

 ENDFOR

 RETURN total

ENDMETHOD

5.1.6 Describe the characteristics and applications of a stack

What is a Stack?

• Last In, First Out (LIFO) structure.

• Only the top element is accessible.

Applications:

• Running recursive processes (function calls are pushed onto stack).

• Storing return memory addresses during program execution.

Za
hr
a
Za
hi
d

5.1.7 Construct algorithms using the access methods of a stack

Stack Access Methods:

• push(value): Add a value on top.

• pop(): Remove and return the top value.

• isEmpty(): Check if the stack is empty.

Pseudocode:

METHOD push(stack, value)

 stack.addToEnd(value)

ENDMETHOD

METHOD pop(stack)

 IF isEmpty(stack) THEN

 OUTPUT "Stack Underflow"

 ELSE

 RETURN stack.removeFromEnd()

 ENDIF

ENDMETHOD

METHOD isEmpty(stack)

 RETURN stack.size = 0

ENDMETHOD

Za
hr
a
Za
hi
d

5.1.8 and 5.1.9 Describe the characteristics and applications of a queue

What is a Queue?

• First In, First Out (FIFO) structure.

• Elements are inserted at rear and removed from front.

Applications:

• Print queues: Jobs printed in order of arrival.

• Simulating physical queues: Like at supermarket checkouts.

Implementations:

• Linear queue: Straightforward.

• Circular queue: Reuses space after elements are removed (efficient).

Construct algorithms using access methods of a queue

Queue Access Methods:

• enqueue(value): Insert value at rear.

• dequeue(): Remove and return value from front.

• isEmpty(): Check if the queue is empty.

Pseudocode:

METHOD enqueue(queue, value)

 queue.addToEnd(value)

ENDMETHOD

METHOD dequeue(queue)

 IF isEmpty(queue) THEN

 OUTPUT "Queue Underflow"

 ELSE

 RETURN queue.removeFromStart()

 ENDIF

ENDMETHOD

METHOD isEmpty(queue)

 RETURN queue.size = 0

ENDMETHOD

Za
hr
a
Za
hi
d

5.1.10 Explain the use of arrays as static stacks and queues

Using Arrays as Stacks:

• push: Place element at the next available index.

• pop: Remove element from the current top index.

• Need to check for full (before push) and empty (before pop).

Example (Stack using Array):

METHOD push(stack, top, value, maxSize)

 IF top = maxSize THEN

 OUTPUT "Stack Overflow"

 ELSE

 top ← top + 1

 stack[top] ← value

 ENDIF

ENDMETHOD

METHOD pop(stack, top)

 IF top = -1 THEN

 OUTPUT "Stack Underflow"

 ELSE

 value ← stack[top]

 top ← top - 1

 RETURN value

 ENDIF

ENDMETHOD

Za
hr
a
Za
hi
d

Using Arrays as Queues:

• enqueue: Insert element at rear.

• dequeue: Remove element from front and shift others if linear.

Example (Queue using Array):

METHOD enqueue(queue, rear, value, maxSize)

 IF rear = maxSize THEN

 OUTPUT "Queue Overflow"

 ELSE

 rear ← rear + 1

 queue[rear] ← value

 ENDIF

ENDMETHOD

METHOD dequeue(queue, front, rear)

 IF front > rear THEN

 OUTPUT "Queue Underflow"

 ELSE

 value ← queue[front]

 front ← front + 1

 RETURN value

 ENDIF

ENDMETHOD

• Circular queue avoids shifting by wrapping around.

5.1.11 Describe the features and characteristics of a dynamic data structure

Dynamic Data Structures:

• Size is flexible: Can grow or shrink during execution.

• Efficient memory use: Only allocates memory when needed.

• Organized as nodes: Each node stores data and a pointer (reference) to the

next node.

Key Concepts:

• Node: A container that holds a data value and one (or more) pointers.

• Pointer: A reference/link to another node’s memory address.

Za
hr
a
Za
hi
d

5.1.12 Describe how linked lists operate logically

Logical operation of linked lists:

• A linked list consists of a series of nodes connected by pointers.

• Each node points to the next node in the sequence.

• The first node is called the head.

• The last node points to null (meaning end of the list).

Main Operations:

• Traversal: Start from the head and follow pointers node by node.

• Insertion: Adjust pointers to add a new node without breaking the chain.

• Deletion: Redirect pointers to remove a node from the chain.

• Searching: Traverse the list to find a specific data item.

5.1.13 Sketch linked lists (single, double and circular)

Single Linked List

Each node points to the next node.

The last node points to null.

[Data|Next] → [Data|Next] → [Data|Next] → null

Adding an item:

• Create a new node.

• Set its pointer to the next node.

• Adjust the previous node's pointer.

Deleting an item:

• Redirect the pointer of the previous node to the next node.

Double Linked List

Each node has two pointers: one to the next node and one to the previous node.

null ← [Prev|Data|Next] ↔ [Prev|Data|Next] ↔ [Prev|Data|Next] → null

Adding an item:

• Update four pointers (new node’s prev and next, adjacent nodes’ next and

prev).

Deleting an item:

• Adjust the previous and next node pointers to bypass the node.

Za
hr
a
Za
hi
d

Circular Linked List

The last node points back to the first node.

 (Single Circular Linked List):

[Data|Next] → [Data|Next] → [Data|Next] ↺ (points back to first node)

 (Double Circular Linked List):

(first node prev points to last node) ← [Prev|Data|Next] ↔ [Prev|Data|Next] ↔

[Prev|Data|Next] → (last node next points to first node)

Main Point:

Traversal never hits null — it keeps cycling through the list.

5.1.14 Describe how trees operate logically (both binary and non-binary)

Trees (General):

• A hierarchical dynamic data structure.

• Made up of nodes connected by pointers.

• Each node may have zero or more child nodes.

• Top node is called the root.

Binary Trees:

• A special type of tree where each node has at most two children:

o Left child

o Right child

Non-Binary Trees:

• Nodes can have more than two children (sometimes unlimited).

Logical Operations on Trees:

• Traversal: Visit all nodes in a specific order (e.g., inorder, preorder, postorder).

• Insertion: Add a new node while maintaining tree rules.

• Deletion: Remove a node and reconnect the tree properly.

• Searching: Find a specific node by following paths.

Link to Recursive Thinking:

Tree operations are naturally recursive, because each subtree is itself a smaller tree.

Za
hr
a
Za
hi
d

5.1.15 Define the terms: parent, left-child, right-child, subtree, root and leaf

Term Definition

Parent A node that has one or more child nodes.

Left-child The child node connected on the left side.

Right-child The child node connected on the right side.

Subtree A tree structure consisting of a node and its descendants.

Root The topmost node in the tree (no parent).

Leaf A node with no children.

(These definitions apply specifically to binary trees.)

5.1.16 State the result of inorder, postorder and preorder tree traversal

Inorder Traversal (Left → Root → Right)

• Visit the left subtree.

• Visit the root node.

• Visit the right subtree.

 Result: Nodes are visited in sorted order (for binary search trees).

Preorder Traversal (Root → Left → Right)

• Visit the root node.

• Visit the left subtree.

• Visit the right subtree.

 Result: The root node is always visited first.

Postorder Traversal (Left → Right → Root)

• Visit the left subtree.

• Visit the right subtree.

• Visit the root node.

 Result: The root node is visited last.

Za
hr
a
Za
hi
d

5.1.17 Sketch binary trees

You must be able to sketch:

• A binary tree from a given sequence.

• Resulting tree after adding nodes.

• Resulting tree after removing nodes.

Example: Binary Tree Sketch

Suppose we insert the values: 7, 4, 9, 2, 5

Step-by-Step Insertion:

Insert 7 → becomes the root.

Insert 4 → smaller than 7 → goes to the left of 7.

Insert 9 → greater than 7 → goes to the right of 7.

Insert 2 → smaller than 4 → goes to the left of 4.

Insert 5 → greater than 4 → goes to the right of 4.

Resulting Tree:

 7

 / \

 4 9

 / \

 2 5

Za
hr
a
Za
hi
d

Example: Removing a Node

Remove 4:

• 4 has two children.

• Find the inorder successor (smallest node in the right subtree → 5).

• Replace 4 with 5.

Resulting Tree:

 7

 / \

 5 9

 /

 2

5.1.18 Define the term dynamic data structure

Dynamic Data Structure:

• A data structure whose size can change during program execution.

• Memory allocation is done at runtime based on the need.

• Can grow or shrink in response to operations like adding or removing elements.

Examples:

• Linked Lists: Can dynamically add or remove nodes.

• Stacks and Queues (implemented with arrays or linked lists).

5.1.19 Compare the use of static and dynamic data structures

Aspect Static Data Structures Dynamic Data Structures

Size
Fixed size; cannot change

during runtime.

Size can change dynamically at

runtime.

Memory

Allocation

Memory allocated at

compile-time.
Memory allocated at runtime.

Efficiency
Faster access as memory is

contiguous.

Slower access due to non-contiguous

memory allocation.

Flexibility Less flexible; predefined size.
More flexible; can grow and shrink as

needed.

Example:

• Static Structure: An array with a fixed size.

• Dynamic Structure: A linked list that grows as nodes are added.

Za
hr
a
Za
hi
d

5.1.20 Suggest a suitable structure for a given situation

Situation 1: Implementing a Stack

• Recommended Structure: Dynamic (Linked List or Array-based Stack).

o Reason: Stacks require constant push and pop operations, which benefit

from dynamic memory allocation to prevent overflow.

o Dynamic Structure: A linked list (where the stack grows/shrinks

dynamically) or a resizable array.

Situation 2: Queue for Print Jobs

• Recommended Structure: Dynamic (Queue using Linked List or Array-based

Queue).

o Reason: Queues are FIFO (First In, First Out), so memory should grow or

shrink as print jobs are added or removed.

o Dynamic Structure: A queue implemented with a linked list or a circular

array.

Situation 3: Database Management (Fixed Size Table)

• Recommended Structure: Static (Array).

o Reason: The table size is predefined, so a static structure is suitable

because memory allocation is known in advance.

o Static Structure: A static array or a 2D array for storing database

records.

Za
hr
a
Za
hi
d

