5.1.1 Identify a situation that requires the use of recursive thinking
What is Recursive Thinking?
« Solving a problem by breaking it into smaller instances of itself.
« Key features:
o Base case: when recursion stops.

o Recursive step: method calls itself with a smaller input.

Example 1: Fractals (Snowflake Generation)
Fractals show self-similarity: parts look like the whole.
Recursive Idea:
e Draw a line segment.
o Subdivide into smaller segments.
« Repeat for each segment.
Pseudocode:
METHOD DrawFractal(level, length)
IF level = © THEN
Draw straight line of 'length'
ELSE
FOR each segment (usually 4 segments)
DrawFractal(level - 1, length / 3)
Turn by specific angle (e.g., 6O degrees)
ENDFOR
ENDIF
ENDMETHOD

Example 2: Calculating Factorial
Factorial of a number n (written as n!) is:
e n=nx(n-1) x (n-2) x ... x 1
« Special case: O! = 1
Recursive ldea:
e n=nx(n-1)!
e« Base case: O! = 1
Pseudocode:
METHOD Factorial(n)
I[Fn =0 THEN

RETURN 1
ELSE
RETURN n x Factorial(n-1)
ENDIF
ENDMETHOD
Example:
Calculate 3!
e Factorial(3) — 3 x Factorial(2)
e Factorial(2) - 2 x Factorial(1)
e Factorial(1) — 1 x Factorial(O)
e Factorial(O) — 1 (base case)
So:
Factorial(1) = 1
Factorial(2) = 2 x 1
Factorial(3) = 3 x 2

noon
& N

5.1.2 ldentify recursive thinking in a specified problem solution
Example: Binary Tree Traversal
A binary tree is naturally recursive:

o Each node acts as a tree.
Recursive ldea:

« Traverse left subtree.

o Visit node.

o Traverse right subtree.

(Inovrder Traversal)

Pseudocode:

METHOD InorderTraversal(node)
IF node # null THEN
InorderTraversal(node.left)
OUTPUT node.value
InorderTraversal(node.right)
ENDIF
ENDMETHOD

5.1.3 Trace a recursive algorithm to express a solution to a problem
Example Trace: Inorder Traversal of a Binary Tree

Tree structure:

4
/\
2 5
/\
1 3
Tracing Steps:
1. InorderTraversal(4)
2. = InorderTraversal(2)
3. = InorderTraversal(1)
o Left null - OUTPUT 1
o Right null
4. Back to 2 - OUTPUT 2
5. = InorderTraversal(3)
o Left null - OUTPUT 3
o Right null
6. Back to 4 - OUTPUT 4
7. = InorderTraversal(5)
o Left null - OUTPUT &
o Right null
Final Output:
12345

5.1.4 Describe the characteristics of a two-dimensional array
What is a Two-Dimensional Array?

o A collection of data organized in rows and columns.

o It is like a table or matrix.

o Each element is accessed using two indices (row and column).
Example:

An array of 3 rows and 4 columns:

[[2, 2,3, 4],
[5, 6, 7, 8],
[4, 10, 11, 12]]
Access array[1][2] — value 7.
Link: 1D arrays are lists, 2D arrays extend lists into a grid.

5.1.5 Construct algorithms using two-dimensional arrays
Example 1: Initializing a 2D Array
Pseudocode:

METHOD InitializeArray(rows, cols)
DECLARE array[rows][cols]
LOOP FOR | FROM O TO rows-1

FOR j FROM O TO cols-1
arvay[i][j] « O
ENDFOR
ENDFOR
RETURN array
ENDMETHOD

Example 2: Summing all elements in a 2D Array
Pseudocode:

METHOD SumElements(array, rows, cols)
DECLARE total < O
FOR | FROM O TO rows-1
FOR j FROM O TO cols-1
total « total + arvay[i][j]
ENDFOR
ENDFOR
RETURN total
ENDMETHOD

5.1.6 Describe the characteristics and applications of a stack
What is a Stack?
o Last In, First Out (LIFO) structure.
o Only the top element is accessible.
Applications:
e Running recursive processes (function calls are pushed onto stack).

» Storing return memory addresses during program execution.

5.1.7 Construct algorithms using the access methods of a stack
Stack Access Methodls:

o push(value): Add a value on top.

o pop(): Remove and return the top value.

o iSEmpty(): Check if the stack is empty.
Pseudocode:

METHOD push(stack, value)
stack.addToEnd(value)
ENDMETHOD

METHOD pop(stack)
IF iSEmpty(stack) THEN
OUTPUT "Stack Underflow"
ELSE
RETURN stack.removeFromEnd()
ENDIF
ENDMETHOD

METHOD isEmpty(stack)
RETURN stack.size = O
ENDMETHOD

5.1.8 and 5.1.9 Describe the characteristics and applications of a queue
What is a Queue?

o First In, First Out (FIFO) structure.

o Elements are inserted at rear and removed from front.
Applications:

« Print queues: Jobs printed in order of arrival.

« Simulating physical queues: Like at supermarket checkouts.
Implementations:

« Linear queue: Straightforward.

o« Circular queue: Reuses space after elements are removed (efficient).

Construct algorithms using access methods of a queue
Queue Access Methods:

o enqueue(value): Insert value at rear.

o dequeue(): Remove and return value from front.

o iSEmpty(): Check if the queue is empty.
Pseudocode:

METHOD enqueue(queue, value)
queue.addToEnd(value)
ENDMETHOD

METHOD dequeue(queue)
IF isEmpty(queue) THEN
OUTPUT "Queue Underflow"
ELSE
RETURN queue.removeFromStart()
ENDIF
ENDMETHOD

METHOD isEmpty(queue)
RETURN queue.size = O
ENDMETHOD

5.1.10 Explain the use of arrays as static stacks and queues
Using Arrays as Stacks:

o push: Place element at the next available index.

o pop: Remove element from the curvent top index.

o Need to check for full (before push) and empty (before pop).
Example (Stack using Array):

METHOD push(stack, top, value, maxSize)
IF top = maxSize THEN
OUTPUT "Stack Overflow"
ELSE
top < top + 1
stack[top] <« value
ENDIF
ENDMETHOD

METHOD pop(stack, top)
IF top = -1 THEN
OUTPUT "Stack Underflow"
ELSE
value < stack[top]

top < top - 1
RETURN value
ENDIF

ENDMETHOD

Using Arrays as Queues:
« enqueue: Insert element at rear.
o dequeue: Remove element from front and shift others if linear.

Example (Queue using Array):

METHOD enqueue(queue, rear, value, maxSize)
IF rear = maxSize THEN
OUTPUT "Queue Overflow"
ELSE
rear < rear + 1
queuelrear] < value
ENDIF
ENDMETHOD

METHOD dequeue(queue, front, rear)
IF front > rear THEN
OUTPUT "Queue Underflow"
ELSE
value < queue[front]
front < front + 1
RETURN value
ENDIF
ENDMETHOD
o Circular queue avoids shifting by wrapping around.
5.1.11 Describe the features and characteristics of a dynamic data structure
Dynamic Data Structures:
« Size is flexible: Can grow or shrink during execution.
« Efficient memory use: Only allocates memory when needed.
« Organized as nodes: Each node stores data and a pointer (reference) to the
next node.
Key Concepts:
« Node: A container that holds a data value and one (or more) pointers.

« Pointer: A reference/link to another node’s memory address.

5.1.12 Describe how linked lists operate logically
Logical operation of linked lists:
o A linked list consists of a series of nodes connected by pointers.
« Each node points to the next node in the sequence.
« The first node is called the head.
o The last node points to null (meaning end of the list).
Main Operations:
« Traversal: Start from the head and follow pointers node by node.
« Insertion: Adjust pointers to add a new node without breaking the chain.
« Deletion: Redirect pointers to remove a node from the chain.

« Searching: Traverse the list to find a specific data item.

5.1.13 Sketch linked lists (single, double and circular)
Single Linked List

Each node points to the next node.

The last node points to null.

[Data|Next] - [Data|Next] - [Data|Next] — null
Adding an item:
e Create a new node.
« Set its pointer to the next node.
« Adjust the previous node's pointer.
Deleting an item:
« Redirect the pointer of the previous node to the next node.

Double Linked List

Each node has two pointers: one to the next node and one to the previous node.

null < [Prev|Data|Next] < [Prev|Data|Next] < [Prev|Data|Next] — null
Adding an item:
« Update four pointers (new node’s prev and next, adjacent nodes’ next and
prev).
Deleting an item:
o Adjust the previous and next node pointers to bypass the node.

Circular Linked List
The last node points back to the first node.
(Single Circular Linked List):

[Data|Next] — [Data|Next] - [Data|Next] O (points back to first node)
(Double Circular Linked List):

(first node prev points to last node) < [Prev[Data[Next] < [Preleata‘Next] <
[Prev|Data|Next] — (last node next points to first node)
Main Point:
Traversal never hits null — it keeps cycling through the list.
5.1.14 Describe how trees operate logically (both binary and non-binary)
Trees (General):

o A hierarchical dynamic data structure.

« Made up of nodes connected by pointers.

e Each node may have zero or more child nodes.

« Top node is called the root.

Binary Trees:
o A special type of tree where each node has at most two children:
o Left child
o Right child
Non-Binary Trees:

o Nodes can have more than two children (sometimes unlimited).

Logical Operations on Trees:
« Traversal: Visit all nodes in a specific order (e.g., inorder, preorder, postorder).
o Insertion: Add a new node while maintaining tree rules.
» Deletion: Remove a node and reconnect the tree properly.
« Searching: Find a specific node by following paths.
Link to Recursive Thinking:

Tirree operations are naturally recursive, because each subtree is itself a smaller tree.

5.1.15 Define the terms: parent, left-child, right-child, subtree, root and leaf

Term Definition

Parent A node that has one or more child nodes.

Left-child The child node connected on the left side.

Right-child The child node connected on the right side.

Subtree A tree structure consisting of a node and its descendants.
Root The topmost node in the tree (no parent).

Leaf A node with no children.

(These definitions apply specifically to binary trees.)

5.1.16 State the result of inorder, postorder and preorder tree traversal
Inorder Traversal (Left - Root — Right)

o Visit the left subtree.

o Visit the root node.

o Visit the right subtree.

Result: Nodes are visited in sorted order (for binary search trees).

Preorder Traversal (Root — Left - Right)
o Visit the root node.
o Visit the left subtree.
o Visit the right subtree.

Result: The root node is always visited first.

Postorder Traversal (Left - Right - Root)
o Visit the left subtree.
o Visit the right subtree.
o Visit the root node.

Result: The root node is visited last.

5.1.17 Sketch binary trees

You must be able to sketch:
o A binary tree from a given sequence.
» Resulting tree after adding nodes.

o Resulting tree after removing nodes.
Example: Binary Tree Sketch
Suppose we insert the values: 7, 4, 4, 2, 5
Step-by-Step Insertion:
Insert 7 — becomes the root.
Insert 4 — smaller than 7 — goes to the left of 7.
Insert 9 — greater than 7 — goes to the right of 7.
Insert 2 — smaller than 4 — goes to the left of 4.
Insert 5 — greater than 4 — goes to the right of 4.

Resulting Tree:

/\
4 q
/ \
2 5

Example: Removing a Node
Remove 4.
e 4 has two children.
o Find the inorder successor (smallest node in the right subtree — 5).
« Replace 4 with s.
Resulting Tree:
7
/' \
5 9
/
2
5.1.18 Define the term dynamic data structure
Dynamic Data Structure:
» A data structure whose size can change during program execution.
o Memory allocation is done at runtime based on the need.
o Can grow or shrink in response to operations like adding or removing elements.
Examples:
o Linked Lists: Can dynamically add or remove nodes.
o« Stacks and Queues (implemented with arvays or linked lists).

5.1.19 Compare the use of static and dynamic data structures

Aspect Static Data Structures Dynamic Data Structures
si Fixed size; cannot change Size can change dynamically at
ize
during runtime. runtime.
Mewmory Mewmory allocated at ,
) y Mewmory allocated at runtime.
Allocation compile-time.
. Faster access as memory is Slower access due to non-contiguous
Efficiency , _
contiguous. memory allocation.
More flexible; can grow and shrink as
Flexibility Less flexible; predefined size. I
needed.
Example:

o« Static Structure: An arvay with a fixed size.
o Dynamic Structure: A linked list that grows as nodes are added.

5.1.20 Suggest a suitable structure for a given situation
Situation 1: Implementing a Stack
o Recommended Structure: Dynamic (Linked List or Array-based Stack).
o Reason: Stacks require constant push and pop operations, which benefit
from dynamic memory allocation to prevent overflow.
o Dynamic Structure: A linked list (where the stack grows/shrinks
dynamically) or a resizable array.
Situation 2: Queue for Print Jobs
o Recommended Structure: Dynamic (Queue using Linked List or Array-based
Queue).
o Reason: Queues are FIFO (First In, First Out), so memory should grow or
shrink as print jobs are added or removed.
o Dynamic Structure: A queue implemented with a linked list or a circular
arvay.
Situation 3: Database Management (Fixed Size Table)
o Recommended Structure: Static (Array).
o Reason: The table size is predefined, so a static structure is suitable
because memory allocation is known in advance.
o Static Structure: A static arvay or a 2D arvay for storing database

records.

